70 research outputs found

    Growth delay of human bladder cancer cells by Prostate Stem Cell Antigen downregulation is associated with activation of immune signaling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI) anchored protein expressed not only in prostate but also in pancreas and bladder cancer as shown by immunohistochemistry and mRNA analysis. It has been targeted by monoclonal antibodies in preclinical animal models and more recently in a clinical trial in prostate cancer patients. The biological role played in tumor growth is presently unknown. In this report we have characterized the contribution of PSCA expression to tumor growth.</p> <p>Methods</p> <p>A bladder cell line was engineered to express a doxycycline (dox) regulated shRNA against PSCA. To shed light on the PSCA biological role in tumor growth, microarray analysis was carried out as a function of PSCA expression. Expression of gene set of interest was further analyzed by qPCR</p> <p>Results</p> <p>Down regulation of the PSCA expression was associated with reduced cell proliferation <it>in vitro </it>and <it>in vivo</it>. Mice bearing subcutaneous tumors showed a reduced tumor growth upon treatment with dox, which effectively induced shRNA against PSCA as revealed by GFP expression. Pathway analysis of deregulated genes suggests a statistical significant association between PSCA downregulation and activation of genes downstream of the IFNα/β receptor.</p> <p>Conclusions</p> <p>These experiments established for the first time a correlation between the level of PSCA expression and tumor growth and suggest a role of PSCA in counteracting the natural immune response.</p

    A diagnosis of the plasma waves responsible for the explosive energy release of substorm onset

    Get PDF
    During geomagnetic substorms, stored magnetic and plasma thermal energies are explosively converted into plasma kinetic energy. This rapid reconfiguration of Earth’s nightside magnetosphere is manifest in the ionosphere as an auroral display that fills the sky. Progress in understanding of how substorms are initiated is hindered by a lack of quantitative analysis of the single consistent feature of onset; the rapid brightening and structuring of the most equatorward arc in the ionosphere. Here, we exploit state-of-the-art auroral measurements to construct an observational dispersion relation of waves during substorm onset. Further, we use kinetic theory of high-beta plasma to demonstrate that the shear Alfven wave dispersion relation bears remarkable similarity to the auroral dispersion relation. In contrast to prevailing theories of substorm initiation, we demonstrate that auroral beads seen during the majority of substorm onsets are likely the signature of kinetic Alfven waves driven unstable in the high-beta magnetotail

    Hypothalamic FTO is associated with the regulation of energy intake not feeding reward

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Polymorphism in the FTO gene is strongly associated with obesity, but little is known about the molecular bases of this relationship. We investigated whether hypothalamic FTO is involved in energy-dependent overconsumption of food. We determined FTO mRNA levels in rodent models of short- and long-term intake of palatable fat or sugar, deprivation, diet-induced increase in body weight, baseline preference for fat versus sugar as well as in same-weight animals differing in the inherent propensity to eat calories especially upon availability of diverse diets, using quantitative PCR. FTO gene expression was also studied in organotypic hypothalamic cultures treated with anorexigenic amino acid, leucine. In situ hybridization (ISH) was utilized to study FTO signal in reward- and hunger-related sites, colocalization with anorexigenic oxytocin, and c-Fos immunoreactivity in FTO cells at initiation and termination of a meal.</p> <p>Results</p> <p>Deprivation upregulated FTO mRNA, while leucine downregulated it. Consumption of palatable diets or macronutrient preference did not affect FTO expression. However, the propensity to ingest more energy without an effect on body weight was associated with lower FTO mRNA levels. We found that 4-fold higher number of FTO cells displayed c-Fos at meal termination as compared to initiation in the paraventricular and arcuate nuclei of re-fed mice. Moreover, ISH showed that FTO is present mainly in hunger-related sites and it shows a high degree of colocalization with anorexigenic oxytocin.</p> <p>Conclusion</p> <p>We conclude that FTO mRNA is present mainly in sites related to hunger/satiation control; changes in hypothalamic FTO expression are associated with cues related to energy intake rather than feeding reward. In line with that, neurons involved in feeding termination express FTO. Interestingly, baseline FTO expression appears linked not only with energy intake but also energy metabolism.</p

    An Assessment of Mobile Predator Populations along Shallow and Mesophotic Depth Gradients in the Hawaiian Archipelago.

    Get PDF
    Large-bodied coral reef roving predators (sharks, jacks, snappers) are largely considered to be depleted around human population centers. In the Hawaiian Archipelago, supporting evidence is primarily derived from underwater visual censuses in shallow waters (=30?m). However, while many roving predators are present or potentially more abundant in deeper strata (30-100?m+), distributional information remains sparse. To partially fill that knowledge gap, we conducted surveys in the remote Northwestern Hawaiian Islands (NWHI) and populated Main Hawaiian Islands (MHI) from 2012-2014 using baited remote underwater stereo-video. Surveys between 0-100?m found considerable roving predator community dissimilarities between regions, marked conspicuous changes in species abundances with increasing depth, and largely corroborated patterns documented during shallow water underwater visual censuses, with up to an order of magnitude more jacks and five times more sharks sampled in the NWHI compared to the MHI. Additionally, several species were significantly more abundant and larger in mesophotic versus shallow depths, which remains particularly suggestive of deep-water refugia effects in the MHI. Stereo-video extends the depth range of current roving predator surveys in a more robust manner than was previously available, and appears to be well-suited for large-scale roving predator work in the Hawaiian Archipelago

    Cytochrome P450 1 genes in birds : evolutionary relationships and transcription profiles in chicken and Japanese quail embryos

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e28257, doi:10.1371/journal.pone.0028257.Cytochrome P450 1 (CYP1) genes are biomarkers for aryl hydrocarbon receptor (AHR) agonists and may be involved in some of their toxic effects. CYP1s other than the CYP1As are poorly studied in birds. Here we characterize avian CYP1B and CYP1C genes and the expression of the identified CYP1 genes and AHR1, comparing basal and induced levels in chicken and quail embryos. We cloned cDNAs of chicken CYP1C1 and quail CYP1B1 and AHR1. CYP1Cs occur in several bird genomes, but we found no CYP1C gene in quail. The CYP1C genomic region is highly conserved among vertebrates. This region also shares some synteny with the CYP1B region, consistent with CYP1B and CYP1C genes deriving from duplication of a common ancestor gene. Real-time RT-PCR analyses revealed similar tissue distribution patterns for CYP1A4, CYP1A5, CYP1B1, and AHR1 mRNA in chicken and quail embryos, with the highest basal expression of the CYP1As in liver, and of CYP1B1 in eye, brain, and heart. Chicken CYP1C1 mRNA levels were appreciable in eye and heart but relatively low in other organs. Basal transcript levels of the CYP1As were higher in quail than in chicken, while CYP1B1 levels were similar in the two species. 3,3′,4,5,5′-Pentachlorobiphenyl induced all CYP1s in chicken; in quail a 1000-fold higher dose induced the CYP1As, but not CYP1B1. The apparent absence of CYP1C1 in quail, and weak expression and induction of CYP1C1 in chicken suggest that CYP1Cs have diminishing roles in tetrapods; similar tissue expression suggests that such roles may be met by CYP1B1. Tissue distribution of CYP1B and CYP1C transcripts in birds resembles that previously found in zebrafish, suggesting that these genes serve similar functions in diverse vertebrates. Determining CYP1 catalytic functions in different species should indicate the evolving roles of these duplicated genes in physiological and toxicological processes.Funding to MEJ and BB was from the Carl Tryggers Stiftelse and The Swedish Research Council Formas. Funding for BRW and JJS was from the United States National Institutes of Health (National Institute of Environmental Health Sciences), grants R01ES015912 and P42ES007381 to JJS

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved
    corecore